Strengths and limitations of the SSCHA

how dows it compare with other approaches?

by Lorenzo Monacelli

Self-Consistent Harmonic Approximation

  • A method to compute the Free energy of the system
  • $$ F = \min_{\hat \rho}\left\{ \braket{H}_{\hat \rho} - T S[\hat \rho]\right\} $$
  • Restrict $\hat\rho$ to solutions of harmonic $\hat{\mathcal H}_{\mathcal{R}, \Phi}$
  • $$ \hat\rho_{\mathcal{R},\Phi} = \frac{e^{-\beta \hat{\mathcal{H}}_{\mathcal{R}, \Phi}}}{\mathcal{Z}} $$

    Self-Consistent Harmonic Approximation

  • A method to compute the Free energy of the system
  • $$ F = \min_{\hat \rho}\left\{ \braket{H}_{\hat \rho} - T S[\hat \rho]\right\} $$
  • Restrict $\hat\rho$ to solutions of harmonic $\hat{\mathcal H}_{\mathcal{R}, \Phi}$
  • $$ \hat{\mathcal{H}}_{\mathcal{R}, \Phi} = \sum_\alpha \frac{ {{\hat P}_\alpha}^2}{2m_\alpha} +\underbrace{\sum_{\alpha\beta}(\hat R_\alpha - {\color{blue}\mathcal{R}_\alpha}) {\color{darkgreen}\Phi_{\alpha\beta}}(\hat R_\beta - {\color{blue}\mathcal{R}_\beta})}_{\mathcal V(R)} $$
  • Minimize $F$ with respect to $\mathcal{R}$ and $\Phi$ $$F \le F[\hat\rho_{\mathcal R, \Phi}] = F_{\mathcal H} + \left< V(R) - \mathcal V(R) \right>_{\hat\rho_{\mathcal R, \Phi}}$$
  • Self-Consistent Harmonic Approximation

  • Minimize $F$ with respect to $\mathcal{R}$ and $\Phi$ $$F \le F[\hat\rho_{\mathcal R, \Phi}] = F_{\mathcal H} + \left< V(R) - \mathcal V(R) \right>_{\hat\rho_{\mathcal R, \Phi}}$$
  • SCHA is a first-principles theory

    • $\Phi$ are not the phonons!
    • Phase-stability through linear response theory
      $$ \frac{d^2 F}{d{\mathcal R}_a d{\mathcal R}_b} = \Phi_{ab} + \stackrel{(3)}{\Phi}_{acd}\Lambda_{cdef}\stackrel{(3)}{\Phi}_{efb} + \ldots $$
    • Dynamics solves a time-dependent Schrödinger equation:
      $$ i\frac{d}{dt} \hat \rho(t) = \left[\hat{\mathcal H}[\hat\rho(t)], \hat\rho(t)\right] $$
    • Phonons are dynamical perturbations
      $$ G_{ab}(t) =\sqrt{m_a m_b}\braket{\left[R_a(t) - {\mathcal R}_a\right] \left[R_b(0) - {\mathcal R}_b\right]} $$

    Strengths of SSCHA

    • Exploit symmetries.
      $S^\dagger \Phi S = \Phi \;\;\;\; S\mathcal R = \mathcal R$
    • Analytic expression for the entropy.
      $$ F = F_{\mathcal H} + \left< V(R) - \mathcal V(R)\right> $$
    • Interpolation on q-mesh: simulate infinite supercells.
    • Rigorous linear-response properties:

    Weaknesses of SSCHA

    • The probability distribution is a Gaussian.
      • Fails in systems where atoms displace significantly.
      • Ionic diffusion
      • Ionic movements deviating from straight lines
    • Bad scaling in absence of symmetries

    What we cannot do with the SSCHA?

    • Liquids
    • Rotating molecules
    • Glasses

    Comparison with different methods

    SSCHA

    • Quantum zero-point motion
    • Symmetries
    • Space group constraint
    • Analytic free energy
    • Approximated distribution
    • Dynamical Properties
    • $N^3$ scaling

    Molecular Dynamics

    • Classical sampling
    • No symmetries
    • No space group constraint
    • No entropy
    • Exact distribution
    • Dynamical Properties
    • Linear scaling

    Comparison with different methods

    SSCHA

    • Quantum zero-point motion
    • Symmetries
    • Space group constraint
    • Analytic free energy
    • Approximated distribution
    • Dynamical Properties
    • $N^3$ scaling

    Path-Integral Molecular dynamics

    • Quantum sampling
    • No symmetries
    • No space group constraint
    • No entropy
    • Exact distribution
    • No dynamical properties
    • $PN$ linear scaling

    Use the right tool at the right time

    • Is $T \lesssim \frac{\hbar\omega_\text{max}}{k_b}$?
    • Phase-diagram?
    • Dynamical properties?
    • Liquid, amorphous, rotations?
    • Anharmonicity and high T?
    • PIMD, SSCHA, Harmonic
    • SSCHA, Harmonic
    • SSCHA, MD
    • PIMD, MD
    • PIMD, MD, SSCHA

    Alternatives to the SSCHA

    Alternatives to the SSCHA

    • Self-consistent ab initio lattice dynamics (SCAILD)
    • Self-consistent phonons (SCP)
    • Temperature-dependent effective potential (TDEP)
    • Many others ....

    Alternatives to the SSCHA

    The name Self-Consistent Harmonic comes from the equations $$ \Phi_{ab} = \left< \frac{\partial^2V}{\partial R_a \partial R_b} \right>_{\rho_{{\mathcal R}, \Phi}} \qquad 0 = \left < \frac{\partial V}{\partial R_a} \right>_{\rho_{{\mathcal R}, \Phi}} $$ that are solved self-consistently
    • SCAILD and SCP solve the same equations
    • TDEP computes $\Phi_{ab}$ averaging over MD trajectories

    Self-Consistent Ab Initio Lattice Dynamics (SCAILD)

    • Displace atoms along the polarization vectors of $\Phi_{ab}$ $$ R_a^\mu = \mathcal{R}_a + \sum_b e_\mu^b \sqrt{\frac{\hbar\left(2n_\mu + 1\right)}{2\omega_\mu m_b}} $$
    • Compute the ab-initio force on the displaced atoms.
    • Compute the new $\Phi_{ab}$ from the forces $$ f_a(R_a) = -\sum_b \Phi_{ab} (R_b - \mathcal{R}_b) $$
    Souvatzis et al, Phys. Rev. Lett. 100, 095901 (2008)

    Self-Consistent Ab Initio Lattice Dynamics (SCAILD)

    but...

    • This would coincide with the SSCHA if:
      • The lattice vectors $\mathcal R$ do not change
      • The polarization vectors of $\Phi_{ab}$ do not change
    • The free energy contains only the harmonic part: $$ F_{\text{scaild}} \neq F_{\text{sscha}} $$ $$ F_{\text{scaild}} = F_{\mathcal H} + V({\mathcal R}) \qquad F_{\text{sscha}} = F_{\mathcal H} + \braket{V - \mathcal V}_{\rho_{\mathcal R, \Phi}} $$
    • SCAILD is not variational!
    Souvatzis et al, Phys. Rev. Lett. 100, 095901 (2008)

    Temperature Dependent Energy Potential (TDEP)

    • Model the potential as a Taylor expansion with temperature dependent coefficients fitted from AIMD trajectories
      $$ {\mathcal V}({R}, T) = \sum_{ab} \frac{1}{2} \stackrel{(2)}{\Phi}_{ab}(T) (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) + $$
      $$ + \sum_{abc} \frac{1}{6} \stackrel{(3)}{\Phi}_{abc}(T) (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) (R_c - \mathcal{R}_c) + \dots $$
    • The free energy is evaluated from the harmonic part as: $$ F_{\text{tdep}} = F_{\Phi(T)} + \braket{V - \mathcal V}_{\rho_{\text{MD}}} $$
    • TDEP is not variational!
    Hellman et al, Phys. Rev. B 84, 180301(R) (2011)

    The auxiliary force constant matrix $\Phi(T)$

    • $\Phi(T)$ have no physical meaning.
    • It does not indicate the phase stability. $$ \frac{d^2F}{d{\mathcal R}_a d{\mathcal R}_b} \neq \Phi $$
    • It does not describe the anharmonic phonon energy.
    • The spectral function is not physical.
    • In TDEP, $\Phi$ depends on the order $n$ of the fit of the potential.
      • $\Phi$ is the harmonic force constant matrix if $n\rightarrow\infty$ .

    Self-Consistent Phonons (SCP)

    • Model the potential as a Taylor expansion
      $$ V({R}) = V(\mathcal{R}) + \sum_{ab} \frac{1}{2} \stackrel{(2)}{\Phi}_{ab} (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) + $$
      $$ + \sum_{abc} \frac{1}{6} \stackrel{(3)}{\Phi}_{abc} (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) (R_c - \mathcal{R}_c) + \dots $$
    • Compressed sensing technique to fit $\stackrel{(2)}{\Phi}$, $\stackrel{(3)}{\Phi}$ and $\stackrel{(4)}{\Phi}$, ...
    • The SSCHA integrals can be solved analytically $$ \Phi_{ab} = \left< \frac{\partial^2 V}{\partial R_a \partial R_b} \right>_{\rho_{{\mathcal R}, \Phi}} \qquad 0 = \left < \frac{\partial V}{\partial R_a} \right>_{\rho_{{\mathcal R}, \Phi}} $$
    Tadano et al, Phys. Rev. B 92, 054301 (2015)

    Self-Consistent Phonons (SCP)

    And

    Temperature Dependent Effective Potential (TDEP)

    • Model the potential as a Taylor expansion
      $$ V({R}) = V(\mathcal{R}) + \sum_{ab} \frac{1}{2} \stackrel{(2)}{\Phi}_{ab} (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) + $$
      $$ + \sum_{abc} \frac{1}{6} \stackrel{(3)}{\Phi}_{abc} (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) (R_c - \mathcal{R}_c) + \dots $$
    • But in TDEP the force-constants are temperature dependent
      $$ \stackrel{(2)}{\Phi}(T) \qquad \stackrel{(3)}{\Phi}(T) \qquad \stackrel{(4)}{\Phi}(T) \qquad \dots $$
    Tadano et al, Phys. Rev. B 92, 054301 (2015)

    Comparison

    SSCHA SCAILD SCP
    TDEP
    Not Empirical
    Variational
    Computationally cheap
    Relax lattice
    Phase stability
    Phase diagram
    Quantum effects

    Comparison

    SSCHA SCAILD SCP
    TDEP(SCP)
    Not Empirical
    Variational
    Computationally cheap
    Relax lattice
    Phase stability
    Phase diagram
    Quantum effects