- Liquids
- Rotating molecules
- Glasses
Comparison with different methods
SSCHA
- Quantum zero-point motion
- Symmetries
- Space group constraint
- Analytic free energy
- Approximated distribution
- Dynamical Properties
- $N^3$ scaling
Molecular Dynamics
- Classical sampling
- No symmetries
- No space group constraint
- No entropy
- Exact distribution
- Dynamical Properties
- Linear scaling
Comparison with different methods
SSCHA
- Quantum zero-point motion
- Symmetries
- Space group constraint
- Analytic free energy
- Approximated distribution
- Dynamical Properties
- $N^3$ scaling
Path-Integral Molecular dynamics
- Quantum sampling
- No symmetries
- No space group constraint
- No entropy
- Exact distribution
- No dynamical properties
- $PN$ linear scaling
Use the right tool at the right time
- Is $T \lesssim \frac{\hbar\omega_\text{max}}{k_b}$?
- Phase-diagram?
- Dynamical properties?
- Liquid, amorphous, rotations?
- Anharmonicity and high T?
- PIMD, SSCHA, Harmonic
- SSCHA, Harmonic
- SSCHA, MD
- PIMD, MD
- PIMD, MD, SSCHA
Alternatives to the SSCHA
Alternatives to the SSCHA
- Self-consistent ab initio lattice dynamics (SCAILD)
- Self-consistent phonons (SCP)
- Temperature-dependent effective potential (TDEP)
- Many others ....
Alternatives to the SSCHA
The name Self-Consistent Harmonic comes from the equations
$$
\Phi_{ab} = \left< \frac{\partial^2V}{\partial R_a \partial R_b} \right>_{\rho_{{\mathcal R}, \Phi}}
\qquad
0 = \left < \frac{\partial V}{\partial R_a} \right>_{\rho_{{\mathcal R}, \Phi}}
$$
that are solved self-consistently
- SCAILD and SCP solve the same equations
- TDEP computes $\Phi_{ab}$ averaging over MD trajectories
Self-Consistent Ab Initio Lattice Dynamics (SCAILD)
- Displace atoms along the polarization vectors of $\Phi_{ab}$
$$
R_a^\mu = \mathcal{R}_a + \sum_b e_\mu^b \sqrt{\frac{\hbar\left(2n_\mu + 1\right)}{2\omega_\mu m_b}}
$$
- Compute the ab-initio force on the displaced atoms.
- Compute the new $\Phi_{ab}$ from the forces
$$
f_a(R_a) = -\sum_b \Phi_{ab} (R_b - \mathcal{R}_b)
$$
Souvatzis et al, Phys. Rev. Lett. 100, 095901 (2008)
Self-Consistent Ab Initio Lattice Dynamics (SCAILD)
but...
- This would coincide with the SSCHA if:
- The lattice vectors $\mathcal R$ do not change
- The polarization vectors of $\Phi_{ab}$ do not change
- The free energy contains only the harmonic part:
$$
F_{\text{scaild}} \neq F_{\text{sscha}}
$$
$$
F_{\text{scaild}} = F_{\mathcal H} + V({\mathcal R}) \qquad F_{\text{sscha}} = F_{\mathcal H} + \braket{V - \mathcal V}_{\rho_{\mathcal R, \Phi}}
$$
- SCAILD is not variational!
Souvatzis et al, Phys. Rev. Lett. 100, 095901 (2008)
Temperature Dependent Energy Potential (TDEP)
- Model the potential as a Taylor expansion with temperature dependent coefficients fitted from AIMD trajectories
$$
{\mathcal V}({R}, T) = \sum_{ab} \frac{1}{2} \stackrel{(2)}{\Phi}_{ab}(T) (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) +
$$
$$
+ \sum_{abc} \frac{1}{6} \stackrel{(3)}{\Phi}_{abc}(T) (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) (R_c - \mathcal{R}_c) + \dots
$$
- The free energy is evaluated from the harmonic part as:
$$
F_{\text{tdep}} = F_{\Phi(T)} + \braket{V - \mathcal V}_{\rho_{\text{MD}}}
$$
- TDEP is not variational!
Hellman et al, Phys. Rev. B 84, 180301(R) (2011)
The auxiliary force constant matrix $\Phi(T)$
- $\Phi(T)$ have no physical meaning.
- It does not indicate the phase stability.
$$
\frac{d^2F}{d{\mathcal R}_a d{\mathcal R}_b} \neq \Phi
$$
- It does not describe the anharmonic phonon energy.
- The spectral function is not physical.
- In TDEP, $\Phi$ depends on the order $n$ of the fit of the potential.
- $\Phi$ is the harmonic force constant matrix if $n\rightarrow\infty$ .
Self-Consistent Phonons (SCP)
- Model the potential as a Taylor expansion
$$
V({R}) = V(\mathcal{R}) + \sum_{ab} \frac{1}{2} \stackrel{(2)}{\Phi}_{ab} (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) +
$$
$$
+ \sum_{abc} \frac{1}{6} \stackrel{(3)}{\Phi}_{abc} (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) (R_c - \mathcal{R}_c) + \dots
$$
- Compressed sensing technique to fit $\stackrel{(2)}{\Phi}$, $\stackrel{(3)}{\Phi}$ and $\stackrel{(4)}{\Phi}$, ...
- The SSCHA integrals can be solved analytically
$$
\Phi_{ab} = \left< \frac{\partial^2 V}{\partial R_a \partial R_b} \right>_{\rho_{{\mathcal R}, \Phi}}
\qquad
0 = \left < \frac{\partial V}{\partial R_a} \right>_{\rho_{{\mathcal R}, \Phi}}
$$
Tadano et al, Phys. Rev. B 92, 054301 (2015)
Self-Consistent Phonons (SCP)
And
Temperature Dependent Effective Potential (TDEP)
- Model the potential as a Taylor expansion
$$
V({R}) = V(\mathcal{R}) + \sum_{ab} \frac{1}{2} \stackrel{(2)}{\Phi}_{ab} (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) +
$$
$$
+ \sum_{abc} \frac{1}{6} \stackrel{(3)}{\Phi}_{abc} (R_a - \mathcal{R}_a) (R_b - \mathcal{R}_b) (R_c - \mathcal{R}_c) + \dots
$$
- But in TDEP the force-constants are temperature dependent
$$
\stackrel{(2)}{\Phi}(T) \qquad \stackrel{(3)}{\Phi}(T) \qquad \stackrel{(4)}{\Phi}(T) \qquad \dots
$$
Tadano et al, Phys. Rev. B 92, 054301 (2015)
Comparison
|
SSCHA |
SCAILD |
SCP |
TDEP |
Not Empirical |
✓ |
✗ |
✓ |
✗ |
Variational |
✓ |
✗ |
✗ |
✗ |
Computationally cheap |
✗ |
✓ |
✓ |
✗ |
Relax lattice |
✓ |
✗ |
✓ |
✓ |
Phase stability |
✓ |
✗ |
✓ |
✗ |
Phase diagram |
✓ |
✓ |
✓ |
✓ |
Quantum effects |
✓ |
✓ |
✓ |
✗ |
Comparison
|
SSCHA |
SCAILD |
SCP |
TDEP(SCP) |
Not Empirical |
✓ |
✗ |
✓ |
✓ |
Variational |
✓ |
✗ |
✗ |
✗ |
Computationally cheap |
✗ |
✓ |
✓ |
✗ |
Relax lattice |
✓ |
✗ |
✓ |
✓ |
Phase stability |
✓ |
✗ |
✓ |
✓ |
Phase diagram |
✓ |
✓ |
✓ |
✓ |
Quantum effects |
✓ |
✓ |
✓ |
✗ |